13 research outputs found

    An implantable mixed-signal CMOS die for battery-powered in vivo blowfly neural recordings

    Get PDF
    © 2018 A mixed-signal die containing two differential input amplifiers, a multiplexer and a 50 KSPS, 10-bit SAR ADC, has been designed and fabricated in a 0.35 μm CMOS process for in vivo neural recording from freely moving blowflies where power supplied voltage drops quickly due to the space/weight limited insufficient capacity of the battery. The designed neural amplifier has a 66 + dB gain, 0.13 Hz-5.3 KHz bandwidth and 0.39% THD. A 20% power supply voltage drop causes only a 3% change in amplifier gain and 0.9-bit resolution degrading for SAR ADC while the on-chip data modulation reduces the chip size, rendering the designed chip suitable for battery-powered applications. The fabricated die occupies 1.1 mm2 while consuming 238 μW, being suitable for implantable neural recordings from insects as small as a blowfly for electrophysiological studies of their sensorimotor control mechanisms. The functionality of the die has been validated by recording the signals from identified interneurons in the blowfly visual system

    Architecture for frequency-to-current conversion

    No full text

    A 1.26µW cytomimetic IC emulating complex nonlinear mammalian cell cycle dynamics: synthesis, simulation and proof-of-concept measured results

    No full text
    Cytomimetic circuits represent a novel, ultra low-power, continuous-time, continuous-value class of circuits, capable of mapping on silicon cellular and molecular dynamics modelled by means of nonlinear ordinary differential equations (ODEs). Such monolithic circuits are in principle able to emulate on chip, single or multiple cell operations in a highly parallel fashion. Cytomimetic topologies can be synthesized by adopting the Nonlinear Bernoulli Cell Formalism (NBCF), a mathematical framework that exploits the striking similarities between the equations describing weakly-inverted Metal-Oxide Semiconductor (MOS) devices and coupled nonlinear ODEs, typically appearing in models of naturally encountered biochemical systems. The NBCF maps biological state variables onto strictly positive subthreshold MOS circuit currents. This paper presents the synthesis, the simulation and proof-of-concept chip results corresponding to the emulation of a complex cellular network mechanism, the skeleton model for the network of Cyclin-dependent Kinases (CdKs) driving the mammalian cell cycle. This five variable nonlinear biological model, when appropriate model parameter values are assigned, can exhibit multiple oscillatory behaviors, varying from simple periodic oscillations, to complex oscillations such as quasi-periodicity and chaos. The validity of our approach is verified by simulated results with realistic process parameters from the commercially available AMS 0.35 µm technology and by chip measurements. The fabricated chip occupies an area of 2.27 mm2 and consumes a power of 1.26 µW from a power supply of 3 V. The presented cytomimetic topology follows closely the behavior of its biological counterpart, exhibiting similar time-dependent solutions of the Cdk complexes, the transcription factors and the proteins

    Vector-scalar-product circuit concept

    No full text

    Micro-LED arrays: a tool for two-dimensional neuron stimulation

    No full text
    Stimulating neuron cells with light is an exciting new technology that is revolutionizing the neurosciences. To date, due to the optical complexity that is involved, photostimulation has only been achieved at a single site using high power light sources. Here we present a GaN based micro-light emitting diode (LED) array that can open the way to multi-site photostimulation of neuron cells. The device is a two-dimensional array of micrometre size LED emitters. Each emitter has the required wavelength, optical power and modulation bandwidth to trigger almost any photosensitizer and is individually addressable. We demonstrate micrometre resolution photoactivation of a caged fluorophore and photostimulation of sensitized living neuron cells. In addition, a complete system that combines the micro-LED array with multi-site electrophysiological recording based on microelectrode array technology and/or fluorescence imaging is presented
    corecore